
Exploring Streaming Dataflow
Architecture for In Situ

Visualization
Huy Vo, Daniel Osmari, Joao Comba, Peter Lindstrom,

and Claudio Silva

Work in Progress Report

Funded by Sandia, LLNL, DOE, and NSF

Thursday, April 28, 2011

VTK Parallelism (pre 2010)

2H. Vo, et al, Computer Graphics Forum (Proceedings of EuroVis), 2010

Parallelism only at module level !

Thursday, April 28, 2011

VTK Parallelism (post 2010)

3H. Vo, et al, Computer Graphics Forum (Proceedings of EuroVis), 2010

Thursday, April 28, 2011

Issues
• Resources are maintained per each module

• Not suitable for GPU coordinations

• Conforming to VTK pipeline requests is
making extension to the system to be over
complicated

• Citations to detailed related work (e.g.,
VisIt, ParaView, DeVIDE, SCIRun,
VisTrails, ...) are in our manuscript.

4H. Vo, et al, Computer Graphics Forum (Proceedings of EuroVis), 2010

Thursday, April 28, 2011

... then comes HyperFlow

• A true dataflow architecture

• Supporting both GPUs and CPUs

• Flexible to extend to other platforms

• Provide highly-parallel constructs

5H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Thursday, April 28, 2011

HyperFlow Architecture

6H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

TOM
Task

Implementation Task
Implementation

Task Impl.

RESOURCES

• Task-Oriented Module (TOM)

• A set of implementations

• Each has its own resource
specification

Thursday, April 28, 2011

HyperFlow Architecture

7H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

TOM
Task

Implementation Task
Implementation

Task Impl.

RESOURCES

• Virtual Processing Element
(VPE)

• Abstract device driver

• Setup context for execution
and data transfer

VPE
CPU/GPU

VPE
CPU/GPU

VPE
CPU/GPU

Thursday, April 28, 2011

HyperFlow Architecture

8H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

TOM
Task

Implementation Task
Implementation

Task Impl.

RESOURCES

• Flows - Data Connections

• Execution tokens

• Wrapping actual data TOM

flow

VPE
CPU/GPU

VPE
CPU/GPU

VPE
CPU/GPU

Thursday, April 28, 2011

HyperFlow Architecture

9H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

TOM
Task

Implementation Task
Implementation

Task Impl.

RESOURCES

• Resource Manager and
Execution Scheduler

• Direct flows

• Schedule data transfers

• Map computation to VPEs

TOM

flow

FLOW MAPPER SCHEDULER

flow flow flow TOM TOM

VPE
CPU/GPU

VPE
CPU/GPU

VPE
CPU/GPU

Thursday, April 28, 2011

HyperFlow Library
• roughly 3000 lines of code

• 15 classes, but only need to know 5

• hyperflow::TaskImplementation

• hyperflow::TaskOrientedModule

• hyperflow::Flow

• hyperflow::Data

• hyperflow::ExecutionEngine

Thursday, April 28, 2011

HyperFlow API
• Easy to use: just send flows to the system

Online Submission ID:

Extra material for submission 380

Category:

Abstract— This document provides a more detailed description of the Hyperflow API

!
1 HYPERFLOW API

HyperFlow has an underlying API composed of a set of C++ classes
and functions that expose various ways to construct pipelines to the
developer. The base class to manage all ports and implementation
objects is called TaskOrientedModule. Developers who wish to build
their own modules should instantiate or extend this class. Listing 1
demonstrates the basic interface of TaskOrientedModule and shows a
simple example of how to construct a pipeline in HyperFlow. The
SourceImpl, FilterImpl and SinkImpl classes must inherit from another
important HyperFlow class, TaskImplementation, which is used as the
base class to specify task implementation objects.

1.1 Task Oriented Module

class TaskOrientedModule {
public:
TaskOrientedModule(int nInput, int nOutput,

const char *moduleName);
void addImplementation(TaskImplementation* impl);
static void connect(

TaskOrientedModule* srcModule, int srcPort,
TaskOrientedModule* dstModule, int dstPort

);
... // Additional parameters if subclassed

};
// Construction of the pipeline

TaskOrientedModule Source(0, 1, "Image Reader");
TaskOrientedModule Filter(1, 1, "Gaussian Blur");
TaskOrientedModule Sink(1, 0, "Viewer");
Source.addImplementation(new SourceImpl());
Filter.addImplementation(new FilterImpl());
Sink.addImplementation(new SinkImpl());
TaskOrientedModule::connect(&Source,0,&Filter,0);
TaskOrientedModule::connect(&Filter,0,&Sink,0);

Listing 1: Public interface of the TaskOrientedModule class, and
example Example of pipeline construction in HyperFlow.

1.2 Flow management

An individual Flow can be created using the following API call:

Flow *createFlow(Flow *refFlow=NULL);

If a reference Flow is supplied to this function, the new Flow will
share the same identification and data as the reference. Once a Flow
is created, it can be sent to the VPE scheduler using the method send-

Flows(). All flows sent in the same call to this method are assigned
the same identification, and thus executed with the same priority. The
interface for sendFlows() is:

void sendFlows(
int n, Flow *flows, // flow array
RETTYPE ret, bool all // return policy

);

The value of ret is used to determine when this function should re-
turn, and can be either RET IMMEDIATELY, RET ON DEPLOY or
RET ON FREE. RET IMMEDIATELY determines that the function
should just add the Flows to the scheduler queue and return imme-
diately, while RET ON DEPLOY makes the function return only when

Flows have been assigned to VPEs. Finally, RET ON FREE forces the
function to wait until Flows have been completely executed and their
resources freed. The final argument determines if these return con-
ditions should be met by all Flows or just one of them. This allows
developers to write streaming applications exploiting different levels
of parallelism depending on the application. To illustrate this, we show
below how a typical streaming application can be constructed in Hy-
perFlow:

while <data is coming> do {
Flow *flow = engine->createFlow(data);
engine->sendFlows(1, flow, RET_ON_DEPLOY, true);

}

Typically, initial modules in a pipeline have no input ports. Neverthe-
less, they need to be executed to generate Flows that will trigger the
execution of the entire pipeline. This is done in HyperFlow by sending
an empty Flow to the initial modules, which can be done conveniently
using another EE method, sendUpdate().

By default, HyperFlow defines two types of VPEs: CPU Threads and
CUDA Devices, which map to individual CPU threads and CUDA-
enabled hardware, respectively. The architecture also naturally sup-
ports customizable VPEs, since users can extend the VirtualProcessin-

gElement class, allowing potentially arbitrary computing resources
to be transparently integrated into HyperFlow. Among others, the
two main functions that need to be implemented in VPE subclasses
are enterExectution() and leaveExecution(), responsible for configuring
and finalizing execution contexts, respectively. For the case of CPU
Threads, for instance, this is where thread affinity is enforced.

The VPE scheduler runs an infinite loop, each time consuming a sin-
gle Flow from the priority queue and sending it to the execution list.
Also, the scheduler monitors Flows currently under execution to re-
move them from the execution list and free their resources once they
are done. This loop can be described as:

while (scheduler->waitForSchedulingEvents())
scheduler->scheduleNext();

When scheduleNext() returns, either all Flows have been successfully
mapped to VPEs for execution or there are no available VPEs that
can process the Flows in the queue. In either case, waitForSchedul-

ingChange will wait until new Flows are added to the queue or a VPE
is made available (when a Flow under execution is completed). The
main scheduling strategy of HyperFlow is implemented in the schedu-

leNext() method.

class DImageData : public Data {
public:

DImageData(void *data, DMTYPE medium)
: Data(medium)
{
this->imageData = data;

}

// This function will get call at before the
// destruction of every data objects by HyperFlow
void releaseData(VirtualProcessingElement *vpe)
{
if (this->medium==DM_GPU_MEMORY)

vpe->localFree(this->imageData);
}

1

Online Submission ID:

Extra material for submission 380

Category:

Abstract— This document provides a more detailed description of the Hyperflow API

!
1 HYPERFLOW API

HyperFlow has an underlying API composed of a set of C++ classes
and functions that expose various ways to construct pipelines to the
developer. The base class to manage all ports and implementation
objects is called TaskOrientedModule. Developers who wish to build
their own modules should instantiate or extend this class. Listing 1
demonstrates the basic interface of TaskOrientedModule and shows a
simple example of how to construct a pipeline in HyperFlow. The
SourceImpl, FilterImpl and SinkImpl classes must inherit from another
important HyperFlow class, TaskImplementation, which is used as the
base class to specify task implementation objects.

1.1 Task Oriented Module

class TaskOrientedModule {
public:
TaskOrientedModule(int nInput, int nOutput,

const char *moduleName);
void addImplementation(TaskImplementation* impl);
static void connect(

TaskOrientedModule* srcModule, int srcPort,
TaskOrientedModule* dstModule, int dstPort

);
... // Additional parameters if subclassed

};
// Construction of the pipeline

TaskOrientedModule Source(0, 1, "Image Reader");
TaskOrientedModule Filter(1, 1, "Gaussian Blur");
TaskOrientedModule Sink(1, 0, "Viewer");
Source.addImplementation(new SourceImpl());
Filter.addImplementation(new FilterImpl());
Sink.addImplementation(new SinkImpl());
TaskOrientedModule::connect(&Source,0,&Filter,0);
TaskOrientedModule::connect(&Filter,0,&Sink,0);

Listing 1: Public interface of the TaskOrientedModule class, and
example Example of pipeline construction in HyperFlow.

1.2 Flow management

An individual Flow can be created using the following API call:

Flow *createFlow(Flow *refFlow=NULL);

If a reference Flow is supplied to this function, the new Flow will
share the same identification and data as the reference. Once a Flow
is created, it can be sent to the VPE scheduler using the method send-

Flows(). All flows sent in the same call to this method are assigned
the same identification, and thus executed with the same priority. The
interface for sendFlows() is:

void sendFlows(
int n, Flow *flows, // flow array
RETTYPE ret, bool all // return policy

);

The value of ret is used to determine when this function should re-
turn, and can be either RET IMMEDIATELY, RET ON DEPLOY or
RET ON FREE. RET IMMEDIATELY determines that the function
should just add the Flows to the scheduler queue and return imme-
diately, while RET ON DEPLOY makes the function return only when

Flows have been assigned to VPEs. Finally, RET ON FREE forces the
function to wait until Flows have been completely executed and their
resources freed. The final argument determines if these return con-
ditions should be met by all Flows or just one of them. This allows
developers to write streaming applications exploiting different levels
of parallelism depending on the application. To illustrate this, we show
below how a typical streaming application can be constructed in Hy-
perFlow:

while <data is coming> do {
Flow *flow = engine->createFlow(data);
engine->sendFlows(1, flow, RET_ON_DEPLOY, true);

}

Typically, initial modules in a pipeline have no input ports. Neverthe-
less, they need to be executed to generate Flows that will trigger the
execution of the entire pipeline. This is done in HyperFlow by sending
an empty Flow to the initial modules, which can be done conveniently
using another EE method, sendUpdate().

By default, HyperFlow defines two types of VPEs: CPU Threads and
CUDA Devices, which map to individual CPU threads and CUDA-
enabled hardware, respectively. The architecture also naturally sup-
ports customizable VPEs, since users can extend the VirtualProcessin-

gElement class, allowing potentially arbitrary computing resources
to be transparently integrated into HyperFlow. Among others, the
two main functions that need to be implemented in VPE subclasses
are enterExectution() and leaveExecution(), responsible for configuring
and finalizing execution contexts, respectively. For the case of CPU
Threads, for instance, this is where thread affinity is enforced.

The VPE scheduler runs an infinite loop, each time consuming a sin-
gle Flow from the priority queue and sending it to the execution list.
Also, the scheduler monitors Flows currently under execution to re-
move them from the execution list and free their resources once they
are done. This loop can be described as:

while (scheduler->waitForSchedulingEvents())
scheduler->scheduleNext();

When scheduleNext() returns, either all Flows have been successfully
mapped to VPEs for execution or there are no available VPEs that
can process the Flows in the queue. In either case, waitForSchedul-

ingChange will wait until new Flows are added to the queue or a VPE
is made available (when a Flow under execution is completed). The
main scheduling strategy of HyperFlow is implemented in the schedu-

leNext() method.

class DImageData : public Data {
public:

DImageData(void *data, DMTYPE medium)
: Data(medium)
{
this->imageData = data;

}

// This function will get call at before the
// destruction of every data objects by HyperFlow
void releaseData(VirtualProcessingElement *vpe)
{
if (this->medium==DM_GPU_MEMORY)

vpe->localFree(this->imageData);
}

1

Thursday, April 28, 2011

HyperFlow In Action

12H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

BLUR

GPU BLUR

CPU BLUR

BLEND

GPU BLEND

CPU BLEND

INVERT

GPU INVERT

CPU INVERT

THRESHOLD

GPU THRESH

CPU THRESH

READER
CPU DECODE

FLOW MAPPER SCHEDULER

f1 f2 f600 3GPU 8CPU

• An edge detection pipeline

Thursday, April 28, 2011

HyperFlow In Action

13H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

FLOW MAPPER SCHEDULER

f1 f2 f600 3GPU 8CPU

• Each flow carries a piece of image

BLUR

GPU BLUR

CPU BLUR

BLEND

GPU BLEND

CPU BLEND

INVERT

GPU INVERT

CPU INVERT

THRESHOLD

GPU THRESH

CPU THRESH

READER
CPU DECODE

CPU DECODE

CPU DECODE

CPU DECODE

CPU DECODE

GPU BLEND

GPU THRESH

GPU INVERT

CPU BLUR

CPU BLUR

CPU BLEND

CPU THRESH

... f11 f8 f7 f6

f4 f5

f2 f3 f1

Thursday, April 28, 2011

HyperFlow In Action

14H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

FLOW MAPPER SCHEDULER

f1 f2 f600 3GPU 8CPU

• Pairs of (module, flow) are mapped onto available resources

BLUR

GPU BLUR

CPU BLUR

BLEND

GPU BLEND

CPU BLEND

INVERT

GPU INVERT

CPU INVERT

THRESHOLD

GPU THRESH

CPU THRESH

READER
CPU DECODE

f1 f2

f3 f4 f5

f6 ... f11

GPU BLUR

GPU BLUR

GPU BLEND

CPU BLUR

CPU BLUR

CPU BLEND

CPU THRESH

CPU BLEND CPU BLUR

CPU BLUR

CPU BLEND

CPU THRESH

Thursday, April 28, 2011

Experiments with HyperFlow

• Synthetic applications (micro-benchmarks)

• Evaluating scheduling and data handling
strategies

• Real applications

• Evaluating scalability, performance and
usability in practice

15H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Thursday, April 28, 2011

Micro-benchmarks

• Model actual pipelines without
implementing real computation code

• Each task implementation is parameterized
by execution time and input/output ratio

• Generated automatically by Python script

• Benchmark results can be visualized after
runs with flow animation and Gantt charts
of resources utilization.

16H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Thursday, April 28, 2011

Trace Visualization

17H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Thursday, April 28, 2011

Micro-benchmarks Pipelines

18H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Asymmetric

Split-Join

Scan

Thursday, April 28, 2011

Asymmetric Flow Animation

19H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Thursday, April 28, 2011

Micro-benchmarks Gantt
Charts

20H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Asymmetric
(57.4% utilization)

Split-Join
(78.9% utilization)

Scan
(83.4% utilization)

Thursday, April 28, 2011

Streaming Edge Detection

21H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code

Visualization Code

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code

Data Reduction

Analysis/Storage

> RAM

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code

Data Reduction

Analysis/Storage

> RAM

Sequential Execution:
 Run all simulations
 Run data reduction
✗ data spilled to disks

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code Data Reduction

Analysis/Storage

Check an
d process

new
 data

Concurrent Execution:
Visualization and Simulation are indendent tasks
 performing visualization as soon as data are ready

Thursday, April 28, 2011

In Situ Pipeline
Simulation Code Data Reduction

Analysis/Storage

Check an
d process

new
 data

> RAM

✗ still has the memory footprint problem if
Simulation produces data faster than Visualization

Concurrent Execution:
Visualization and Simulation are indendent tasks
 performing visualization as soon as data are ready

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Interleaving Simulation and
Visualization tasks
 low memory footprint
 cache-coherent

Thursday, April 28, 2011

In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

How to divide processing
power between Simulation
and Visualization for parallel
execution?
•Too much Sim: high memory usage
•Too much Vis: low performance

Interleaving Simulation and
Visualization tasks
 low memory footprint
 cache-coherent

Thursday, April 28, 2011

Example with threaded VTK

Input: 600 compressed images

Simulation Code Image decompression from disks

Visualization Perform edge detection

Data Reduction: resize images

Analysis/Storage Store resized images to disk

Thursday, April 28, 2011

Example with threaded VTK

!"

#"

$"

%"

&"

'"

("

)"

*+,-"#"
.+/-"0"

*+,-"$"
.+/-"&"

*+,-"&"
.+/-"$"

*+,-"0"
.+/-"#"

!"##$%"&

8-core machine

Simulation (image decoding/disk I/O) needs more processing power
Thursday, April 28, 2011

Example with threaded VTK

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

)*+,"("
-*.,"'"

)*+,"$"
-*.,"%"

)*+,"%"
-*.,"$"

)*+,"'"
-*.,"("

!
"#

$%
&'
()
*+
'

!"#$%&'

Results in more memory usage
Thursday, April 28, 2011

Example with threaded VTK
• Fixed resource allocation sacrifices

memory footprint for performance

• Needs an adaptive scheduler to leverage
the processing power between simulation
and visualization

Thursday, April 28, 2011

In Situ Dataflow Architecture --
Using HyperFlow

• Tie simulation and visualization together

• Support streaming

• Minimize memory footprint

• Efficient parallel execution

• Lightweight and straightforward integration

Thursday, April 28, 2011

Threaded VTK Example

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'" #" $" &"

!"
#
$%
&'
(%

)*#+$,%-.%/01'%

()*" +,-./01-2."()*" +34256789":;<" +34256789"

Thursday, April 28, 2011

Threaded VTK Example

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,-./"#"
0-1/"*"

,-./"$"
0-1/"&"

,-./"&"
0-1/"$"

,-./"*"
0-1/"#"

23456789:"

!"##$%"&

Better performance...
Thursday, April 28, 2011

Threaded VTK Example

... and lower memory footprint!

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

)*+,"("
-*.,"'"

)*+,"$"
-*.,"%"

)*+,"%"
-*.,"$"

)*+,"'"
-*.,"("

/01234567"

!
"#

$%
&'
()
*+
'

!"#$%&'

Thursday, April 28, 2011

Input: 2048x2048x1920 grid

Simulation Code Streaming data from disks

Visualization Isosurface Extraction

Isosurface Example

Each visualization code processes data from several
outputs of the Simulation code!

Thursday, April 28, 2011

HyperFlow simplifies data dependency

0

0

1

1 Dx-1

Dy-1

Block (0,0)

Row (0,0)

Cross
(0,0)

(Dx × Dy) modules

(Dx-1) × Dy modules

(Dx-1) × (Dy-1) modules

Dx × (Dy-1) modules

L R

Block (0,1)
D RL

Block (1,0)
D RU

Block (1,1)
D RL U

R

Row (0,1)
L R

Column
(0,0)

Column
(0,1)

• Just specify the data communication between modules

• HyperFlow will optimize the data transfer scheduling strategy
to best use the system resources (including memory usage)

Thursday, April 28, 2011

Isosurface Performance

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

sp
ee

du
p

processors

Linear Speedup HyperFlow [ILC10]

Thursday, April 28, 2011

Isosurface Performance

!"#

!"$#

!"$$#

!"$$$#

!# %# &# '# !"# (%# "&# !%'# %)"#

!
"#

$%
&'
(!

)*
'

+%$,"--$%-'

*+,-./012#

34156#789!$:#

Higher base memory usage because of the unoptimized data
dependency but has better scalability as well

Thursday, April 28, 2011

Lessons Learned
• Streaming should be used to avoid the

memory challenge of in situ vis

• Simulation and Visualization need to be
closely integrated (in a dataflow archicture)
to achieve efficient memory usage and
performance

Thursday, April 28, 2011

Thursday, April 28, 2011

Isocontouring Structured Grid

• Mix multiple data- and task-parallel phases

• Compared to an MPI, hand-tuned parallel streaming
algorithm by Isenburg et al [2010].

65H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

0

0

1

1 Dx-1

Dy-1

Block (0,0)

Row (0,0)

Cross
(0,0)

(Dx × Dy) modules

(Dx-1) × Dy modules

(Dx-1) × (Dy-1) modules

Dx × (Dy-1) modules

L R

Block (0,1)
D RL

Block (1,0)
D RU

Block (1,1)
D RL U

R

Row (0,1)
L R

Column
(0,0)

Column
(0,1)

Thursday, April 28, 2011

Isocontouring Structured Grid

• Ran on the UV machine with 264-core

• HyperFlow incurred less overhead than MPI

• Both methods only scale to 64-core

66H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

sp
ee

du
p

processors

Linear Speedup HyperFlow [ILC10]

Thursday, April 28, 2011

Scalability Issue

67H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

sp
ee

du
p

processors

Linear Speedup No Mem HF HyperFlow [ILC10]

1. Remove computation

bad scaling

2. Remove memory access

good scaling

3. Measure memory access
bandwidth

sustained ~500GB/s
after 64 nodesSaturation of memory bandwidth

is the cause

Thursday, April 28, 2011

