An Information-Theoretic Framework for Enabling Extreme-Scale Science Discovery

Han-Wei Shen
The Ohio State University

Motivation

- The speed and capacity of storage cannot keep pace with the advance of computation power
 - I/O becomes a major bottleneck
- Throw away and triage data
 - It is often difficult to decide what data are the most essential for analysis
- In-situ visualization
 - The parameter space for visualization algorithms is often huge

Visual Analytic Sample Questions

- Data reduction and triage
 - Where are the most salient regions?
 - What resolution to use?
- Visual mapping
 - How to choose the best algorithm parameters?
 - How much information in the data is being revealed by the visualization?
- Image Analysis
 - Is this a good view point?
 - Is this a good transfer function?

Approach

- Develop a quantitative model to measure the flow of information across the entire data analysis and visualization pipeline
 - Quantify the information content in the data set
 - Measure the amount of information losses in each stage of the visualization pipeline
 - Choose parameters that can minimize the information losses

Information Theory

- Study the fundamental limits to reliably transmitting messages through a noisy channel
- Model the message as a random variable whose value is taken from a sequence of symbols
- Information content can be measured by Shannon's Entropy

Shannon's Entropy

- The random variable takes a sequence of symbols $\{a_1, a_2, a_3, ..., a_n\}$ with probabilities $\{p_{1}, p_{2}, p_{3}, ..., p_n\}$
- The information content of each symbol $\mathtt{a_i}$ is defined $\log\left(1/p_i\right) = -\log p_i$
- The average amount of information expressed by the random variable is

$$H(x) = -\sum_{i=1}^{n} p_i \log p_i$$

Properties of Shannon's Entropy

- Entropy is to measure the average uncertainty of the random variable
- Entropy is a concave function, which has a maximum value when all outcomes are equally possible

$$p_1 = p_2 = p_3$$

Information and Entropy

Information theory: quantitatively measures the amount of information contained in a data source

Entropy of **X** : $H(\mathbf{X}) = -\sum p(x_i) \log_2 p(x_i)$

Minimal Entropy

Maximal Entropy

Entropy for Scientific Data

- A data set can be considered as a random variable
- Each data point can be considered as an outcome of the random variable
- We can estimate the information content for the whole data set or for local regions

Other Entropy Measures

Joint Entropy

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

Relative Entropy

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Conditional Entropy

$$H(X|Y) = \sum_{y \in \mathcal{Y}} p(y) H(X|Y = y) = -\sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p(x,y) \log p(x|y)$$

Mutual Information

$$I(X;Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Relations of Entropy Measures

Evaluate Visualization

Applications in Visualization

- Streamline placement
- LOD selection
- Viewpoint selection for static and time-varying volume data

Information in Vector Fields

- Concept
 - Treat the vector field as a data source that generates vector orientation as outcome
 - The more diverse the vector orientations, the more information is contained in the vector field
- Measurement
 - Estimate the distribution of the vector orientation
 - Compute the entropy of this distribution as the measurement

Vector field

Polar Histogram

Information in Vector Fields

Entropy Field and Seeding

Measure the entropy around each point's neighborhood

Entropy field: higher value means more information in the corresponding region

Entropy-based seeding: Places streamlines on the region with high entropy

The Information Comparison between Data/Visualization

Vector Field **X**

Streamlines Y

The Information Comparison between Data/Visualization

Vector Field **X**

Streamlines Y

Conditional entropy H(X|Y): The information in X not represented by Y

An effective visualization should represent most information in the data, i.e. H(X|Y) should be small

Conditional Entropy Field and Seeding

Measure the under-represented information in each region

Conditional-entropy-based seeding: Place more seeds on regions with higher under-represented information

Result: 2D Vector Fields

1st iteration: Entropybased seeding

2nd iteration: Cond.entropy-based seeding

Conditional entropy

When conditional entropy converges

ITL Software

- Information-Theoretic Library (ITL)
- Entropy analysis for exascale data sets
- Integrated into large-scale simulations to provide in situ data reduction and analysis

Also used in post-processing for quality quantification

X Entropy Computation
X Joint Entropy Computation

Number of Processors

and parameter tuning

Figure: Performance of ITL run on NERSC's Franklin (Cray XT4). Our initial results showed that satisfactory scalability can be achieved.

Science Applications

- Nek5000: A Navier-Stokes solve for fluid flow, convective heat, and magnetohydrodynamics simulations
- Flash: Adaptive mesh code for astrophysics and cosmology

Collaborators

- Tom Peterka, Rob Ross at Argonne National Laboratory
- Yi-Jen Chiang at Polytechnic Institute of NYU
- Science collaborators: Paul Fischer, Aleksandr Obabko, Paul Ricker, Boyana Norris,

