
Experiments with Pure Parallelism

Hank Childs, Dave Pugmire, Sean Ahern,
Brad Whitlock, Mark Howison, Prabhat,

Gunther Weber, & Wes Bethel

April 13, 2010

The landscape: how tools process data

P0

P1

P3

P2

P8
 P7
P6

P5

P4

P9

Pieces of data
(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallel visualization
program

P0
 P3
P2

P5
P4
 P7
P6

P9
P8

P1

Parallel
Simulation Code

This technique is called “pure parallelism”

Pure parallelism

•  Pure parallelism is data-level parallelism, but…
–  Multi-resolution can be data-level parallelism
–  Out-of-core can be data-level parallelism

•  Pure parallelism: “brute force” … processing full
resolution data using data-level parallelism

•  Pros:
–  Easy to implement

•  Cons:
–  Requires large I/O capabilities
–  Requires large amount of primary memory
–  requires big machines

Research Questions

•  Is it possible/feasible to run production-
quality visual data analysis s/w on large
machines and on large data sets?
–  Are the tools we use right now ready for tomorrow’s

data?

•  What obstacles/bottlenecks do we encounter
at massive data?

Experiment methodology
•  Preprocess step: generate

large data set
•  Read it
•  Contour
•  Render @ 1024x1024

•  Synthetic data:
–  Wanted to look at tomorrow’s

data; not available yet
–  Synthetic data should be

reasonable surrogate for real
data. Visualization of 1 trillion

cells, visualized with VisIt
on Franklin using 16,000 cores.

Experiment methodology, continued

•  Only used pure parallelism
–  This experiment was about testing the limits of

pure parallelism
–  Purposely did not use in situ, multi-resolution, out-

of-core, data subsetting
•  Pure parallelism is what the production

visualization tools use right now (*).

Volume rendering
•  Ran into problems with

volume rendering.
–  See Dave’s talk.

•  Problem eventually fixed, but
not in time for study
–  Runs on these big machines

are opportunistic and it’s hard
to get a second chance

–  Approximately five seconds per
render

•  Contouring exercises much
of the infrastructure (read,
process, render) Visualization of 2 trillion

cells, visualized with VisIt
on JaguarPF using 32,000 cores.

Experiment methodology, continued

•  Three basic variations
–  Vary over supercomputing environment
–  Vary over data generation
–  Vary over I/O pattern

Varying over supercomputer environment
•  Goals:

–  Ensure results aren’t tied to a single machine.
–  Understand differences from different architectures.

•  Experiment details
–  1 trillion cells per 16,000 cores
–  10*NCores “Brick-of-float” files, gzipped
–  Upsampled data

7-10 network links failed,
had to be statically re-routed

BG/L has 850MHz clock speed

Lustre striping of 2 versus
Lustre striping of 4

Varying over data generation pattern

•  Concern: does
upsampling produce
unrepresentatively
smooth surfaces?

•  Alternative: replication

Visualization of 1 trillion
cells, visualized with VisIt on
Franklin using 16,000 cores.

Results from data generation test

•  Test on franklin, using 16,000 cores with
unzipped data

Contouring time is the same
because case where a

triangle is generated is rare.

Rendering time is different
because replicated pattern

has more geometry.

Varying over I/O pattern

•  Previous tests: uncoordinated I/O, doing 10
“fread”s per core.

•  Can collective communication help?

Franklin I/O maximum: 12GB/s

Pitfalls at scale

•  Volume rendering (see Dave’s talk)
•  Startup time

–  Loading plugins overwhelmed file system
–  Took ~5 minutes
–  Solution #1: Read plugin information on MPI task

0 and broadcast. (90% speedup)
–  Solution #2: static linking

•  Still need to demonstrate at scale

Pitfalls at scale #2: All to one communication

•  Each MPI task needs to report high level
information
–  Was there an error in execution for that task?
–  Data extents? Spatial Extents?

•  Previous implementation:
–  Every MPI task sends a direct message to MPI

task 0.
•  New implementation (Miller, LLNL):

–  Tree communication

Pitfalls at scale #3: reproducible results

Repeated debugging runs at scale are
critical to resolving issues like these.

This study continued after the initial effort
as a way to validate new machines.

Should more tools have been used?

•  Could have performed this study with VisIt,
ParaView, EnSight, etc.

•  Successful test with VisIt validates pure
parallelism.

•  Of course, I/O is a big problem … but
ParaView, EnSight, etc, are doing the same
“fread”s.

Trends in I/O
  Pure parallelism is almost

always >50% I/O and
sometimes 98% I/O

  Amount of data to
visualize is typically
O(total mem)

FLOPs Memory I/O

Terascale
machine

“Petascale
machine”

  Two big factors:
①  how much data you have to read
②  how fast you can read it

   Relative I/O (ratio of total memory and I/O) is
key

Anedoctal evidence: relative I/O really is
getting slower.

Machine name Main memory I/O rate

ASC purple 49.0TB 140GB/s 5.8min

BGL-init 32.0TB 24GB/s 22.2min

BGL-cur 69.0TB 30GB/s 38.3min

Petascale
machine

?? ?? >40min

Time to write memory to disk

Why is relative I/O getting slower?

•  “I/O doesn’t pay the bills”
–  And I/O is becoming a dominant cost in the overall

supercomputer procurement.
•  Simulation codes aren’t as exposed.

–  And will be more exposed with proposed future
architectures.

We need to de-emphasize I/O in our
visualization and analysis techniques.

Conclusions
•  Pure parallelism works, but is only as good as

the underlying I/O infrastructure
–  I/O future looks grim
–  Positive indicator for in situ

processing
•  Full results available in

special issue of Computer
Graphics & Applications,
special issue on
Ultrascale Visualization.

Backup slides

Is the I/O we saw on the hero runs indicative of what we
will see on future machines?

•  Two failure points

–  The number of I/O nodes will be dropping, especially with
increasing numbers of cores per node, making the network to the
I/O nodes the probable bottleneck

•  Jaguar 32K / 2T cells took 729s. If BW disk is 5X faster that is still
145s.

•  LLNL has a bunch of disk and we couldn’t get below two minutes
because of contention

•  Even if BW gets enough disk, disk is very expensive and future
machines will likely not get enough.
–  This is especially true if a FLASH solution takes hold.

OSTs
Network
to I/O nodes CPUs

