Experiments with Pure Parallelism

Hank Childs, Dave Pugmire, Sean Ahern,
Brad Whitlock, Mark Howison, Prabhat,
Gunther Weber, & Wes Bethel

April 13, 2010







Pure parallelism Is data-level parallelism, but...
— Multi-resolution can be data-level parallelism
— Out-of-core can be data-level parallelism

Pure parallelism: “brute force” ... processing full

resolution data using data-level parallelism

Pros:
— Easy to implement

Cons:

— Requires large I/O capabilities

— Requires large amount of primary memory
— =2 requires big machines




 |s it possible/feasible to run production-
quality visual data analysis s/w on large
machines and on large data sets?
— Are the tools we use right now ready for tomorrow’s

data?

 \What obstacles/bottlenecks do we encounter
at massive data”?




S NTO”%
I mEA )
S

ATES O%

Experiment methodology B

Visualization of 1 trillion
cells, visualized with Vislt
on Franklin using 16,000 cores.




Only used pure parallelism

— This experiment was about testing the limits of
pure parallelism

— Purposely did not use in situ, multi-resolution, out-
of-core, data subsetting

* Pure parallelism is what the production
visualization tools use right now (7).




Volume rendering

-+ Ran into problems with
— See Dave’s talk.

« Problem eventually fixed, but
not in time for study

— Runs on these big machines
are opportunistic and it's hard
to get a second chance

— Approximately five seconds per
render
« Contouring exercises much
of the infrastructure (read,

process, render) Visualization of 2 trillion

cells, visualized with VisIt
on JaguarPF using 32,000 cores.




* [hree basic variations
— Vary over supercomputing environment
— Vary over data generation
— Vary over I/O pattern




Goals:

— Ensure results aren’t tied to a single machine.
— Understand differences from different architectures.

Experiment details

— 1 trillion cells per 16,000 cores
— 10*NCores “Brick-of-float” files, gzipped
— Upsampled data

Machine Memory per Top 500 rank
name Machine type or 0S | Total no. of cores | core (Gbytes) System type Clock speed Peak flops (as of Nov. 2009)

JaguarPF | Cray 224,162 2.0 XT5 2.6 GHz 2.33 Pflops 1
Ranger Sun Linux 62,976 2.0 Opteron Quad 2.0 GHz 503.8 Tflops 9
Dawn Blue Gene/P 147,456 1.0 PowerPC 850.0 MHz 415.7 Tflops L
Franklin | Cray 38,128 1.0 XT4 2.6 GHz 352 Tflops 15
Juno Commodity (Linux) 18,402 2.0 Opteron Quad 2.2 GHz 131.6 Tflops 27

Purple AIX (Advanced 12,208 3.5 Power5 1.9 GHz 92.8 Tflops 66
Interactive Executive)




J

m |/O
= Contour
Render

Purple Dawn Juno Ranger Franklin JaguarPF
60 250 110 300 300 800
_ 100 700 N
50 200 90 250 250
80 H H 600
40
3 10| BG/L has 850MHz clock speed
i? 30 50 150 150 400
= 20 1 40 100 100 H 300
Lustre striping of 2 versus 20l L
Lustrepstrigping of 4 7-10 network links failed,
_— - so0 \ | had to be statically re-routed

Figure 2. Runtimes for 1/O, contolking, and rendering. These results

ow that, although there is variation across the

X




» ~10
R 20
30
ey < )‘k‘3/0
z-Aws 0540
s & & 3

. o
X W3
i
e

B
LR




» Test on franklin, using 16,000 cores with
unzipped data

Data Total 1/0 Contour Total pipeline Rendering
generation time (sec.) time (sec.) | execution time (sec.) | time (sec.)
Upsampled 478.3 7.6 486.0 2.8
Replicated 493.Q 7.6 500.7 / 4.9

Contouring time is the same Rendering time is different
because case where a because replicated pattern

triangle is generated is rare. has more geometry.




* Previous tests: uncoordinated I/O, doing 10
‘fread”s per core.

» Can collective communication help?

Data set size Total 1/0 time Read bandwidth
1/0 pattern No. of cores (TCells) (sec.) Data read (Gbytes) (Gbytes per second)

Collective 16,016 1 478.3 3,725.3 7.8
Noncollective 16,000 1 129.3 954.2 7.4




» Volume rendering (see Dave’s talk)

» Startup time
— Loading plugins overwhelmed file system
— Took ~5 minutes

— Solution #1: Read plugin information on MPI task
0 and broadcast. (90% speedup)

— Solution #2: static linking

« Still need to demonstrate at scale




» Each MPI task needs to report high level
Information
— Was there an error in execution for that task?
— Data extents? Spatial Extents?

* Previous implementation:

— Every MPI task sends a direct message to MPI
task O.

* New implementation (Miller, LLNL):
— Tree communication




All-to-one?
Yes
Yes
No

Data set size | Total 1/0 time
No. of cores (TCells)

16,384
65,536
16,384

Contour time

Total pipeline
execution time (sec.)

Pipeline minus
contour & 1/0 (sec.) Date run

June 2009
June 2009

Aug. 2009







e Could have performed this study with Vislt,
ParaView, EnSight, etc.

» Successful test with Vislt validates pure
parallelism.

» Of course, I/O is a big problem ... but
ParaView, EnSight, etc, are doing the same
“fread”s.




Pure parallelism is almost
always >50% |/O and
sometimes 98% /O

Amount of data to

visualize is typically
O(total mem)

Two big factors:

how much data you have to read

how fast you can read it
- Relative I/O (ratio of total memory and 1/0) is
key







« °|/O doesn’t pay the bills”

— And I/O is becoming a dominant cost in the overall
supercomputer procurement.

» Simulation codes aren’'t as exposed.

— And will be more exposed with proposed future
architectures.




* Pure parallelism works, but is only as good as
the underlying I/O Infrastructure

— |/O future looks grim
— Positive indicator for in situ

processing

Architectures

Full results available In

Hank Childs » Lawrence Berkeley National Laboratory

David Pugmire and Sean Ahern = Oak Ridge National Laboratory

special issue of Computer
Graphics & Applications,

Brad Whitlock = Lawrence Livermore National Laboratory

ver the last decade, supercomputer capa-
bilities have increased at a staggering rate.
Petascale computing has arrived, and ma-
chines capable of tens of petaflops will be available
in a few years. No end is in sight to this trend, with
research in exascale computing well under way.
These machines are used primar-
ily for scientific simulations that

special iIssue on
Ultrascale Visualization.

This article presents the results
of experiments studying how
the pure-parallelism paradigm
scales to massive data sets,
including 16,000 or more cores
on trillion-cell meshes, the
largest data sets published

to date in the visualization
literature. The findings on
scaling characteristics and
bottlenecks contribute to
understanding how pure
parallelism will perform in the
future.

produce extremely large data sets.
The value of these simulations is
the scientific insights they pro-
duce, which are often enabled
by scientific visualization. If vi-
sualization software can't keep
pace with the massive data sets
simulations will produce in the
near future, however, it will po-
tentially jeopardize the value of
the simulations and thus the su-
percomputers themselves.

For large-data visualization,
the most fundamental question
is what paradigm to use to pro-

cess this data. Most visualization software for large
data, including much of the production visualiza-
tion software that serves large user communities,
uses brute-force pure parallelism—data parall

with no optimizations to reduce the amount of data
being read. In this approach, the simulation writes

May/June 2010

Published by the ILLE Compater Soclety

Extreme Scaling of Production
Visualization Software on Diverse

Mark Howison, Prabhat, Gunther H. Weber, and E. Wes Bethel » Lawrence Berkeley National Laboratory

data to disk and the visualization software reads
this data at full resolution, storing it in primary
memory. Because the data is so large, it's necessary
to parallelize its processing by partitioning the data
over processors and having each processor work on
a piece of the problem. Through parallelization, the
wisu: tion software can access more /O band-
width (to read data faster), more memeory (to store
‘meore data), and more computing power (to execute
its algorithms more quickly).

Our research secks to better understand how
pure parallelism will perform on more cores with
larger data sets. How does this technique scale?
What are the bottlenecks? What are the pitfalls of
running production software at a massive scale?
And will pure parallelism be effective for the next
generation of data sets?

These questions are especially important because
pure parallelism is not the only data-processing
paradigm. And where pure parallelism is heavily
dependent on /O bandwidth and large memory
footprints, alternatives de-emphasize these traits.
Examples include in situ processing, where visual-
ization algorithms operate during the simulation's
run, and multiresolution techniques, where 2 hier-
archical version of the data set is created and vi-
sualized from coarser to finer versions. With this
paper, however, we only study how pure parallel-
ism will handle massive data.

©272.1716/10/326,00 © 2010 1AL







Two failure points

— The number of 1/0O nodes will be dropping, especially with
increasing numbers of cores per node, making the network to the
|/O nodes the probable bottleneck

Jaguar 32K / 2T cells took 729s. If BW disk is 5X faster that is still
145s.

LLNL has a bunch of disk and we couldn’t get below two minutes
because of contention

Even if BW gets enough disk, disk is very expensive and future
machines will likely not get enough.

— This is especially true if a FLASH solution takes hold.




