
3D Bilateral Filtering on the GPU3D Bilateral Filtering on the GPU

E. Wes BethelE. Wes Bethel
13 April 201013 April 2010

Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory



OutlineOutline

What is Bilateral Filtering?

CUDA Background

GPU implementation project objectives.

The implementation, performance evaluation, 
optimization: algorithmic design choices, tunable 
algorithm parameters.



Gaussian SmoothingGaussian Smoothing

•• Convolution kernel, a Convolution kernel, a 
stencilstencil--based based 
algorithm.algorithm.

•• Weights are a 2D Weights are a 2D 
GaussianGaussian (right).(right).

•• Idea: nearby pixels Idea: nearby pixels 
have more influence, have more influence, 
distant pixels have less distant pixels have less 
influence.influence.



Bilateral Filtering/SmoothingBilateral Filtering/Smoothing

•• Dest Dest pixel pixel ii is the sum is the sum 
of:of:

•• GaussianGaussian weight of weight of 
nearby pixel nearby pixel ii

•• “Photometric “Photometric 
difference” between difference” between 
pixel pixel ii and pixel and pixel ii

•• Normalization constant Normalization constant 
k k –– c c weights are data weights are data 
dependent.dependent.



Comparison of Bilateral and 
Gaussian Smoothing
Comparison of Bilateral and 
Gaussian Smoothing

Synthetic data with 
gaussian noise

Gaussian 
smoothing

Bilateral
smoothing



Comparison of Bilateral and 
Gaussian Smoothing
Comparison of Bilateral and 
Gaussian Smoothing

•• Show the 3 brain/ Show the 3 brain/ xyxy plots here.plots here.

Original Gaussian Bilateral



Why Bother with GPU 
Implementation?
Why Bother with GPU 
Implementation?

•• This algorithm is computeThis algorithm is compute--bound for large bound for large 
filter radii.filter radii.

•• Long runLong run--times:times:
• R=8, ~8min, R=16, ~60min.

•• Data parallel algorithm, nonData parallel algorithm, non--iterative.iterative.



GPU Implementation ObjectivesGPU Implementation Objectives

•• Gain experience developing in CUDAGain experience developing in CUDA
•• Performance optimizationPerformance optimization

• Algorthmic design choices: device memories and 
access patterns.

• Tunable parameters: thread block size/shape



CUDA BackgroundCUDA Background

•• Data parallel programming language:Data parallel programming language:
• Eg., A[I] = B[I] + C[I]

• Runs in parallel on all cores on the GPU.
• GeForce GTX 280: 30 “multi-processors”, 8 

cores/MP, 240 cores total. 

•• Requires GPU code and host code (next Requires GPU code and host code (next 
slides)slides)





<<<nblocks, nthreads>>>







3D Bilateral Filtering on the GPU3D Bilateral Filtering on the GPU

•• Algorithm design choicesAlgorithm design choices
• How do threads access memory?

• Choices about use of high-speed local caches.
• Global memory (shared), constant memory, shared 

memory, texture memory, etc.

•• Tunable algorithm parametersTunable algorithm parameters
• Thread block size, number of threads per block.



Other Speed Bumps Influencing 
Design
Other Speed Bumps Influencing 
Design

•• Limit on number of thread bocks.Limit on number of thread bocks.
• 1D and 2D grids of thread blocks.

• No 3D grid of thread blocks.

• Max dim size = 64K. 

•• Limit on number of threads per thread block.Limit on number of threads per thread block.
• Max of 512 threads per block.

• Max dims (512,512,64) threads/block.



Design ConstraintsDesign Constraints

•• No 3D grid of thread blocks:No 3D grid of thread blocks:
• Our thread kernel must process a row of voxels in 

width, height or depth. 
• Which works best?

• Thread block array is 2D of some number of 
threads. 
• Which size/shape works best?



Memory Access PatternsMemory Access Patterns

•• DepthDepth--row (blue)row (blue)
•• HeightHeight--row row 

(green)(green)
•• WidthWidth--row (red)row (red)
•• Question: which Question: which 

access pattern access pattern 
results in best results in best 
performance?performance?



Memory Access Pattern Test ResultsMemory Access Pattern Test Results



Device MemoriesDevice Memories

•• Global Global –– large, high latency, low bandwidthlarge, high latency, low bandwidth
•• Constant Constant –– small, lowsmall, low--latency, high bandwidth.latency, high bandwidth.

• 64KB not large enough for src, dst volumes

• 64KB large enough for 1D&3D filter weights up to r=12. 

•• Shared memory Shared memory –– small, 16KB, split into banks across small, 16KB, split into banks across 
multiprocessors (too small for this project). multiprocessors (too small for this project). 

•• Question: how is performance affected if we use global Question: how is performance affected if we use global 
vs. constant memory for the filter weights?vs. constant memory for the filter weights?



Device Memories Test ResultsDevice Memories Test Results



Tunable Parameters: Thread Block 
Size and Shape
Tunable Parameters: Thread Block 
Size and Shape

•• Basic ideas:Basic ideas:
• More vs. fewer thread blocks.

• Fewer thread blocks means more threads per block.

• Shape of thread blocks.
• Square-shaped vs. oblong.

•• Question: which combination of thread block Question: which combination of thread block 
size and shape results in best performance?size and shape results in best performance?
• Note: this is the domain of autotuning.



Thread Size/Shape Test Results (1/3)Thread Size/Shape Test Results (1/3)

Invalid 
configurations

Terrible performance

Best performance 
region



Thread Size/Shape Test Results (2/3)Thread Size/Shape Test Results (2/3)

Invalid 
configurations

Terrible performance

Best performance 
region



Thread Size/Shape Test Results (3/3)Thread Size/Shape Test Results (3/3)

Invalid 
configurations

Terrible performance

Best performance 
region



CPU vs. GPU Performance 
Comparison (1/2)
CPU vs. GPU Performance 
Comparison (1/2)



CPU vs. GPU Performance 
Comparison (2/2)
CPU vs. GPU Performance 
Comparison (2/2)



Conclusions/DiscussionConclusions/Discussion

•• GPU configurations with best performance:GPU configurations with best performance:
• Threads access voxels along depth: coalesced memory access!

• Use Constant memory rather than global memory to hold filter 
weights

• Thread block size/shape: 16x8

•• GPU version outperforms CPU implementationGPU version outperforms CPU implementation
• 30x for naïve implementation.

• 150x-200x for tuned implementation.

• Why? Memory bandwidth (142GB/s vs. ~10GB/s) and keeping the 
memory pipeline full.












